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® Encoding user’s clicked news into news
embeddings independently and then aggregate
them into user embedding.

® The word-level interactions across different
clicked news from the same user, which detailed
clues to infer user interest, are ignored by these
contain rich methods.
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Texts of user’s clicked news

1 The challenge in the new story for Iron Man--._
2 The upcoming mogies of Netflix in 2022. :)
3 The success of Marvelzg‘Avengers. —————
4 Adele says if 30 doesn’t come now it never will.

——

5 The most popular songs on YouTube in this week.

6 [ Vinyl aﬁa CD sales both went up in 2021, data says.

Figure 1: The news clicked by a randomly selected user.
Word-level relatedness across texts of user’s clicked news
provide detailed clues to understand user interest.
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Figure 2: The framework of FUM for news recommendation.
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® We assume that a news apticle  k induces  genres of textual

information (e.¢[T, T, ... T ). d entTies) j-th

where (s the genre of the news text.

o T;=[ti1, tiz ... ti1]

® We assume that a targeuuser has previcmily clicked hj  news,
wh j-th denotes the clicked news.
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Figure 2: The framework of FUM for news recommendation.

In experiments, we utilize news topic labels,
description texts of entities, titles, and abstracts
for news modeling.
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2021_Fastformer- Adwitive Attention Can Be where f; represents the i-th clicked news. Finally, we pooling them
Figure 1: 1Y broh QUGG former to build the user embedding uw/ = Att(fy, ..., f). In this way, we
q=Att(q,...q;), q; = Wghi, (2 can efficiently and effectively model and encode user interest from
word-level fine-grained behavior interactions.
k=A kKo G2kr) k= h;
tt(q+ky,...q+kr), ki=Wgh; (3) = Att(cy, ..., Cm)
h; = Wy (k xv;), v;=W;yh; (4) u=ul+ u‘.
A T
where h; and h; denote the input and output of the i-th token in F=u 1.

the behavior embedding sequence, * denotes element-wise product, | D | "
Att(-) denotes the attention pooling network and Wg, Wy, Wy L — | D| Z ( = il )
and W, denote trainable projection parameters. We remark that -
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Table 1: News recommendation performance of different methods on MIND and Feeds. The improvement of FUM over baseline
methods is significant at level p < 0.001 based on t-test.

MIND Feeds
AUC MRR nDCG@5 nDCG@10 AUC MRR nDCG@5 nDCG@10
GRU 65.47+0.18 31.15+0.22 33.64+0.24 39.34+0.24 | 62.95+£0.13 27.57x0.08 31.55£0.12 37.18+0.11
DKN 67.19+0.13 32.97+0.19 35.87+0.22 41.53+0.17 | 64.02+0.25 28.65+0.13 32.97+0.17 38.54+0.17
NPA 67.42+0.15 32.97+0.18 35.90+0.23 41.54+0.20 | 64.83+0.47 29.21+0.36 33.64+0.47 39.18+0.48
KRED 67.77+0.15 33.39+0.15 36.34+0.17 42.04+0.15 64.92+0.14 29.27+0.08 33.71+£0.13 39.25+0.12
GNewsRec 68.38+0.09 33.46+0.22 36.44+0.23 42.15+0.20 | 65.02+0.11 29.28+0.10 33.74+0.13 39.28+0.13
NAML 68.16+0.11 33.31+0.07 36.26+0.10 41.94+0.08 | 65.31+0.12 2947+0.07 33.99+0.09 39.57+0.12
NRMS 68.33+0.27 33.55+0.27 36.53+0.32 42.18+0.30 | 65.21+0.12 29.39+0.05 33.87+£0.06 39.46+0.08
LSTIR 68.53+0.10 33.58+0.15 36.54+0.18 42.23+0.17 | 65.31+0.20 2954+0.15 34.08+0.19 39.63+0.19
FIM 68.15+0.33 33.30%0.27 36.38+0.30 42.02+0.31 | 65.47+0.12 29.62%+0.07 34.19+0.09 39.72+0.09
FUM 70.01+0.10 34.51+0.13 37.68+0.14 43.38+0.13 | 66.93+0.19 30.49+0.16 35.31+0.21 40.87+0.18
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Table 2: Efficiency comparison of user modeling methods on both model training and inference based on 1k samples.

GRU DKN NAML NPA KRED GNewsRec LSTUR NRMS FIM FUM
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Figure 3: Ablation study of our FUM approach.
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Figure 4: FUM with different efficient transformers. The
training and inference time are based on 1k and 10k sam-
ples.
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